

zerospark+ os filtros anti-estáticos

RISCOS E DANOS REDUZIDOS A ZERO

zerospark é a solução em definitivo para resolver os problemas das descargas eletrostáticas dentro dos filtros hidráulicos. Causado pela acumulação de cargas elétricas devido à passagem de óleo nos filtros, isso pode resultar em danos nos elementos filtrantes, óleos e componentes de circuitos, a ponto de causar riscos de incêndios em ambientes em que há materiais inflamáveis.

DA ACUMULAÇÃO À DISSIPAÇÃO DA CARGA

O EFEITO TRIBOELÉTRICO

O corpo com mais eletronegatividade extrai elétrons do outro, gerando uma acumulação de carga negativa sobre si mesmo. O outro corpo se recarrega com a mesma carga, mas com sinal contrário, dando origem as diferenças de potencial que podem ser muito elevadas. Essas, se não forem dissipadas, podem dar origem a descargas eletrostáticas.



1. Contato

2. Distância ≤ 10 mm

3. Balanceamento parcial de carga

4. Corpos eletrostáticos carregados

RELAXAMENTO DA CARGA (I)

Entre os vários métodos dissipativos, o relaxamento da carga consiste em tornar condutores e conectados a terra as tubulações ou tanques através dos quais o líquido flui ou é armazenado.

ELEMENTOS FILTRANTES PADRÃO

O acúmulo da carga eletrostática ocorre nos dielétricos do sistema: materiais filtrantes, óleo e tubos isolantes.

FILTROS EM CELULOSE

Nos elementos celulósicos, os fenômenos triboelétricos causam danos significativos ao material filtrante.

FILTROS EM FIBRA DE VIDRO

Nos elementos em microfibras de vidro, por outro lado, há danos consideráveis no cordão e no adesivo que une o elemento de filtro, porque as cargas acumuladas pelo elemento são descarregadas na haste da cabeça do filtro de metal. Essas queimaduras podem também estender-se para o interior do material, comprometendo a sua resistência mecânica.

MALHA METÁLICA

Os danos também podem ocorrer na malha metálica, um elemento do meio filtrante que mantém juntas as diferentes camadas.

ELEMENTOS FILTRANTES DISSIPADORES

Para resolver o problema de formação das cargas nos filtros, a MP Filtri desenvolveu uma solução inovadora. Substituindo certos componentes isolantes pelas versões condutoras zerospark, criando-se um circuito elétrico dentro do próprio filtro. As cargas sobre o meio filtrante estão livres para deslocarem em direção as tampas e assim dissipada à terra.

BENEFÍCIOS

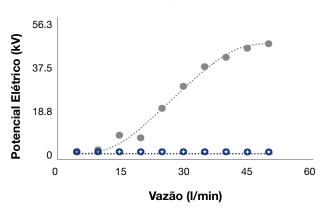
- eliminação do efeito triboelétrico
- O dissipação das cargas acumuladas
- melhora no desempenho com o passar do tempo
- aumento da segurança
- resistência a vazão cíclica
- otimização de peso e custos

Para mais informações ou para solicitar um orçamento, entre em contato com o Departamento Comercial.

OS RESULTADOS

Visando realizar testes para medir as cargas superficiais dos filtros, a MP Filtri projetou e construiu uma bancada de testes em colaboração com o Departamento de Energia Elétrica da Universidade de Bolonha/IT.

O sistema hidráulico especial e os instrumentos de medição utilizados são capazes de mensurar e registrar o potencial elétrico gerado quando um filtro é atravessado por um fluxo de óleo, mensurado em kV.



Essa nova bancada específica nos permitiu realizar testes em diferentes condições de vazão e temperatura tanto para os filtros em linha (por ex.: FMM) como de retorno (por exemplo MPFX) até 250 l/min. Também foi possível mudar o tipo de óleo, verificando as características potenciais nos filtros sob diferentes condições de utilização.

Em condições normais de trabalho, o potencial vai de dezenas de kV a zero, mostrando claramente a eficácia da dissipação das cargas de nossos filtros.

Elementos filtrantes dissipadores

Elementos filtrantes padrão

A tabela a seguir resume alguns exemplos de resultados de medições efetuadas com a mesma vazão e temperatura para elementos do mesmo tamanho, mas construídos com materiais diferentes.

Ao usar um óleo sintético em vez de um óleo mineral, os valores e o sinal das duas grandezas elétricas podem variar.

Potencial Elétrico (kV)	Corrente (µA)
11	-6.0
0	-9.0
6	-1.3
0	-2.1
9-15	-7.0
3-8	-16.0
	11 0 6 0 9-15

	Óleo Mineral	Óleo sintético
Elemento filtrante	Potencial Elétrico (kV)	
Microfibra de vidro padrão	+11	+30
Microfibra de vidro dissipador	0	~0.0
Celulose padrão	+6	-43
Celulose dissipador	0	~0.0

Para mais informações ou para solicitar um orçamento, entre em contato com o Departamento Comercial.

PRESENÇA MUNDIAL

MATRIZ 8 FILIAIS

MAS DE 300 DISTRIBUIDORES

Alemanha França EUA Federação Russa China Reino Unido India Canadá

PASSION TO PERFORM