

MANUAL DOS CONTADORES DE PARTICULAS

Técnicas de medição e dispositivos analisadores de partículas

ÍNDICE	
Introdução	2
Introdução à contagem de partículas	4
Por que a tecnologia de contagem de partículas é vital para um sistema limpo?	4
Uma pequena contaminação vai muito longe	4
A escala do problema	4
A importância da manutenção preventiva da limpeza	5
Principais requisitos para um monitor de contaminação de fluidos	5
Qual é o tamanho das partículas que precisam ser monitoradas?	5
Como funcionam os contadores de partículas	6
Tecnologia LED	7
O processo de lavagem ou flushing	7
O processo de análise	8
Tecnologia de duplo laser	8
Poeira de teste	10
Normas ISO	11
Como ler um código ISO	11
Comparação de códigos de limpeza	12
Norma de classificação de limpeza NAS 1638	12
CLASSIFICAÇÃO DE LIMPEZA SAE AS4059E para fluidos hidráulicos (SAE Aerospace Standard)	13
Como encontrar o produto certo	14
Visão geral do produto	14
Produtos portáteis	14
Produtos com montagem permanente, inline	15
Aplicações laboratoriais	15
Produtos portáteis	16
Comparação de produtos	16
LPA3	17
LPA2	18
CML2	18
Produtos com montagem permanente, inline	19
Comparação de produtos	19
ICM 2.0	20
ICM 4.0	20
ICM 2.0 e ICM 4.0 - Diagrama do circuito hidráulico	21
<u>ICU</u>	21
ACMU	22
Produtos estáticos off-line: BS110 (110 ml) / BS500 (500 ml)	23

A LINHA
COMPLETA DE FILTRAGEM
HIDRÁULICA
E ACESSÓRIOS

...porque a contaminação custa!

70 a 80% de todas as falhas em sistemas hidráulicos e de até 45% de todas as falhas nos mancais são devidas a contaminação no fluido hidráulico e lubrificante

Nos sistemas de fluidos hidráulicos de potência, a potência é transmitida e controlada através de um líquido sob pressão dentro de um circuito fechado. O líquido é tanto um lubrificante como um meio de transmissão de potência.

A presença de partículas contaminantes sólidas no líquido inibe a capacidade do fluido hidráulico de lubrificar e provoca desgaste nos componentes. O aumento da contaminação no fluido tem um impacto direto no desempenho e na confiabilidade do sistema. É necessário manter as partículas contaminantes sólidas em níveis que sejam considerados apropriados para o sistema em questão.

A determinação quantitativa da contaminação por partículas requer precisão na obtenção da amostra e na determinação da contaminação. **A linha de Contadores Automáticos de Partículas** da MP Filtri funciona com base no princípio de extinção da luz. Essa se tornou a técnica aceita de determinação da contaminação.

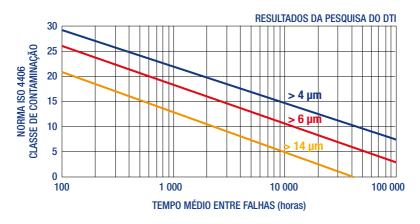
POR QUE A TECNOLOGIA DE CONTAGEM DE PARTÍCULAS É VITAL PARA UM SISTEMA LIMPO?

A presença de partículas no fluido hidráulico é a principal causa de falhas, problemas de confiabilidade, desempenho e menor vida útil dos componentes em sistemas hidráulicos.

Isso resulta na redução da vida útil de equipamentos complexos, aumento dos níveis de serviço e dos custos de manutenção, bem como de dispendiosas paradas não planejadas.

O monitoramento das condições do fluido em tempo real proporciona uma verificação da condição hidráulica imediata e abrangente, alertando os operadores para o estado exato de contaminação em seus sistemas, e assinala potenciais problemas e tendências de limpeza.

UMA PEQUENA CONTAMINAÇÃO VAI MUITO LONGE


Apenas 10 gramas de particulados sólidos são necessários para elevar o nível de contaminação em 10.000 litros de um fluido hidráulico perfeitamente limpo para um valor ISO 4406 19/17/14 (nível acima do aceitável para sistemas hidráulicos e lubrificação).

A vida útil e a confiabilidade dos sistemas hidráulicos são grandemente afetadas pela presença de contaminação por particulados no lubrificante. Quanto mais limpo for o fluido, mais confiável será o sistema ou processo e maior será a vida útil dos componentes.

O monitoramento da contaminação de fluidos hidráulicos é a técnica de monitoramento mais simples e econômica e deveria ser uma técnica de linha de frente em qualquer regime de manutenção.

A ESCALA DO PROBLEMA

- Entre 70 e 80 por cento das falhas hidráulicas são causadas por acúmulo de contaminantes
- Estima-se que 82% do desgaste seja causado por contaminação
- Uma pesquisa do Ministério do Comércio e Indústria do Reino Unido (DTI, Department of Trade and Industry) quantificou a relação entre o nível de confiabilidade de sistemas e a quantidade de níveis de sujeira no sistema, tal como representado pela norma ISO 4406 - Código de Contaminação por Sólidos

INTRODUÇÃO À CONTAGEM DE PARTÍCULAS

A IMPORTÂNCIA DA MANUTENÇÃO PREVENTIVA DA LIMPEZA

O objetivo das formas mais tradicionais de monitoramento (vibração, ruído, detecção de cavacos, etc.) é a consciência da degradação do sistema para que o componente possa ser retirado de serviço antes de falhar catastroficamente. Na maior parte dos casos, o componente precisa ser substituído porque apresenta danos permanentes que vão além do reparo econômico.

No monitoramento da contaminação, a filosofia é completamente diferente. As amostras de fluido do sistema são analisadas quanto a qualquer aumento significativo na contaminação por partículas e as ações são prontamente implementadas para corrigir a situação, por exemplo, através da utilização de filtragem hidráulica de alto desempenho, para melhorar a limpeza do sistema até um nível de limpeza recomendado predefinido e reduzir o desgaste do sistema no menor intervalo de tempo possível. Desta forma, serão alcançados os objetivos de operação confiável e longa vida útil dos componentes.

PRINCIPAIS REQUISITOS PARA UM MONITOR DE CONTAMINAÇÃO DE FLUIDOS

- Necessário ter a capacidade de medir concentrações das menores partículas de contaminação, ou seja, < 10 μm
- Necessário medir uma ampla faixa de tamanhos e concentrações de partículas
- Ser capaz de apresentar os dados em formatos de relatórios padrão reconhecidos na indústria, por exemplo, para sistemas de codificação de limpeza como ISO 4406 ou AS4059 [10]
- Ter precisão, acuracidade e repetibilidade comprovadas
- Fornecer resultados instantâneos e imediatos ou pelo menos em um curto período de tempo para que as ações corretivas possam ser executadas com o mínimo de atraso
- Poder analisar uma ampla gama de tipos de fluido, como fluidos hidráulicos, lubrificantes, fluidos de lavagem e solventes
- Tem um custo "aceitável"

QUAL É O TAMANHO DAS PARTÍCULAS QUE PRECISAM SER MONITORADAS?

A faixa de tamanho de interesse geralmente aceita em sistemas de fluidos é de 4 a 70 μ m_(c) e a maioria dos sistemas de classificação de limpeza apresenta esses tamanhos.

Substância	Mícron		
	de	a	
AREIA DE PRAIA	100	2,000	
PÓ DE CALCÁRIO	10	1,000	
NEGRO DE FUMO	5	500	
CABELO HUMANO (diâmetro)	40	150	
PÓ DE CARBONO	1	100	
PÓ DE CIMENTO	3	100	
PÓ DE TALCO	5	60	
BACTÉRIAS	3	30	
PIGMENTOS	0.1	7	
FUMAÇA DE TABACO	0.01	1	

1 Mícron* = 0,001 mm

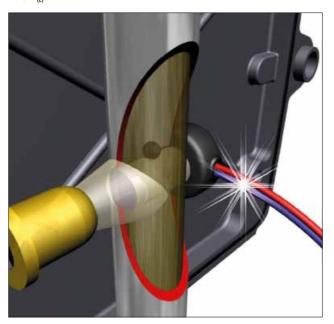
25.4 Micra* = 0,001 pol

Para todos os fins práticos, partículas de 1 mícron de tamanho e menores são permanentemente suspensas no ar.

4 - 14 µm

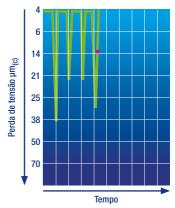
DIMENSAO TÍPICA DE CONTAMINANTE EM UM CIRCUITO HIDRÁULICO

^{*} Designação correta = Micrômetro


COMO FUNCIONAM OS CONTADORES DE PARTÍCULAS

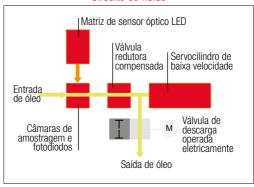
Nossos contadores de partículas utilizam o princípio de extinção da luz para identificar partículas em fluidos hidráulicos.

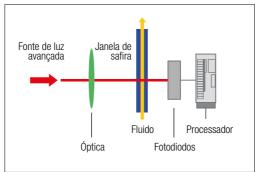
O processo envolve luz de uma fonte com raios paralelos que passa através do sistema óptico e, em seguida, através do fluxo de óleo até um fotodiodo.


À medida que as partículas passam pela fonte de luz, bloqueiam a luz, criando uma "sombra" (perda de tensão) que corresponde ao tamanho de cada partícula.

lsso é medido em picos de sinal que podem ser divididos em 4, 6, 14, 21 $\mu m_{_{(\!c\!)}}$ e acima.

A MP Filtri utiliza dois métodos diferentes de tecnologia de obscurecimento da luz para os seus contadores automáticos de partículas; analisadores de partículas LED e duplo laser.




COMO FUNCIONAM OS CONTADORES DE PARTÍCULAS

TECNOLOGIA - LED (LPA3)

Circuito do fluido

Sistema de fonte de luz e de fluido

O PROCESSO LAVAGEM (OU FLUSHING)

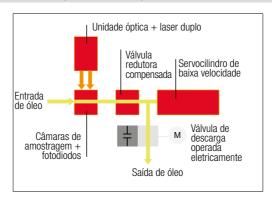
Os modelos LPA2 e LPA3 têm uma válvula de pré-lavagem integrada no projeto do produto, que permite ao usuário limpar os contadores de partículas antes de iniciar o procedimento de análise, garantindo que haja uma mínima influência externa na leitura final da análise.

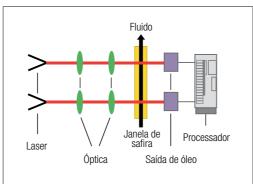
O processo permite que o usuário lave tanto o ponto de amostragem no sistema quanto o tubo de microdiâmetro que conecta o sistema ao contador de partículas.

Caso este procedimento não seja realizado antes de qualquer análise, poderá influenciar no resultado final da análise. Pois o usuário poderá não saber a quantidade da contaminação na mangueira minimess e nos componentes internos do Contador devido ao uso anterior do aparelho.

O processo de lavagem ou de flushing é controlado pela pressão do sistema. A pressão força o fluido através do sensor óptico. A válvula redutora de pressão instalada internamente reduz qualquer pressão elevada do sistema para um mínimo de 1 bar, o que garante que o processo de descarga impeça a pressão do sistema diretamente, através da linha de retorno de óleo do contador de partículas até um recipiente de resíduos. A viscosidade e a temperatura determinam o tempo necessário para limpeza e remoção das partículas antes de iniciar o teste. Normalmente, isso pode durar entre um e dois minutos.

O PROCESSO DE ANÁLISE

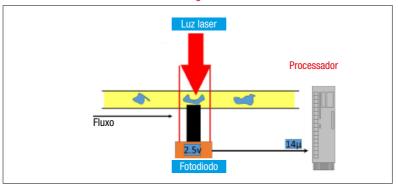

A entrada de óleo chega diretamente a matriz de sensor óptico, o que significa que existe uma tubulação mínima e nenhum componente dinâmico antes que o óleo seja analisado e o contador de partículas seja lavado.


Isso minimiza o efeito que quaisquer componentes ou a tubulação possam ter na contagem geral de partículas. O fluxo de óleo através do sensor é controlado pela bomba de pistão linear eletro-hidráulica de baixa velocidade.

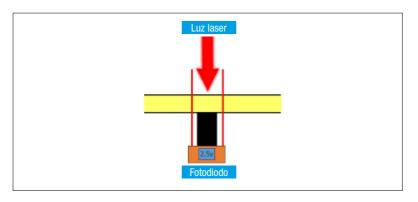
A bomba tem duas finalidades:

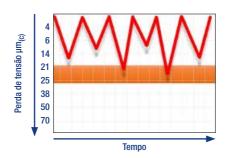
- 1. Controlar a velocidade do óleo que está sendo analisado. A tecnologia dos contadores ópticos de partículas requer que as partículas se desloquem a uma velocidade específica para que a fonte de luz e o procedimento de análise facam a contagem das partículas com precisão.
- 2. Medir a quantidade de óleo que o contador de partículas está analisando. Isso é obtido com a utilização de uma unidade de tacógrafo do motor que mede a quantidade de revoluções do cilindro da bomba. O meio é aspirado através do arranjo de detecção óptica e da válvula de compensação até atingir o volume selecionado. Esse volume é selecionado pelo usuário antes de iniciar o teste.

TECNOLOGIA - DUPLO LASER (LPA2, CML 2)



- Um laser de ponto único de alta precisão projetado para medir a contaminação entre 4 μm e 6 μm_(c)
- Um laser padrão de precisão projetado para medir contaminantes do sistema entre 6 μm_(c) e 70 μm_(c)


COMO FUNCIONAM OS CONTADORES DE PARTÍCULAS


Tecnologia laser

À medida que a partícula passa através do feixe de laser, a perda de luz é diretamente proporcional ao tamanho da partícula

LPA Queda de tensão = Tamanho da partícula

POEIRA DE TESTE

Os métodos originais de contagem de partículas foram realizados usando microscópios ópticos (ARP 598) com a utilização do formato de relatório NAS1638.

Quando os contadores automáticos de partículas (CAPs) entraram no mercado pela primeira vez, forneceram um método mais rápido de análise de amostras, mas exigiam um método de calibragem. O método original foi o formato de calibragem ISO 4402 e utilizava como meio o ACFTD (Air Cleaner Fine Test Dust).

Desde então, criou-se uma poeira de teste sintetizada para substituir o hoje extinto ACFTD. Ele é conhecido como tpoeira média de teste ISO (MTD ISO): ISO 12103-A3.

É a poeira de teste utilizados para a calibragem dos CAPs baseadas na extinção de luz de acordo com as normas de calibragem ISO 11171 e ISO 11943.

Também constitui a base para os materiais de referência padrão com certificação NIST - SRM2806 e RM8631.

Há uma ligeira diferença entre as medições de partículas dos dois métodos. Para manter o mesmo padrão de limpeza, as calibragens que usam MTD ISO são corrigidas para a seguinte escala de partículas.

Transfo	rmação:		Transfo	rmação:
de tamanho ACFTD ISO 4402	para tamanho NIST (ISO 11171)		de tamanho NIST (ISO 11171)	para tamanho ACFTD ISO 4402
μm	μm	(c)	μm _(C)	μm
1	4.2	4	4	Indefinido
2	4.6		5	2.7
3	5.1		6	4.3
5	6.4	6	7	5.9
7	7.7	7	8	7.4
10	9.8	3	9	8.9
15	13.6	14	10	10.2
20	17.	.5	15	16.9
25	21.2	21	20	23.4
30	24.9		25	30.1
40	31.7		30	37.3

Essas alterações de tamanho levaram a revisões dos formatos de relatório para a ISO 4406 (nova revisão). NAS1638 passou a fazer parte da SAE AS4059 rev. E (no momento da redação deste documento, o formato de relatório está na revisão F).

A norma ISO 4406 da Organização Internacional de Normatização (International Organization for Standardization) é o método preferido para indicar o número de partículas sólidas contaminantes em uma amostra.

O nível de contaminação é definido pela contagem do número de partículas de determinadas dimensões por unidade de volume de fluido. A medição é realizada por contadores automáticos de partículas (CAP Contador Automático de Partículas - PCM Monitor de Contaminação de Partículas).

Após a contagem, determinam-se as classes de contaminação, que correspondem ao número de partículas detectadas na unidade de fluido.

Os métodos de classificação mais comuns seguem as normas ISO 4406 e SAE AS4059.

Exemplo de Classificação ISO 4406:

O código refere-se ao número de partículas do mesmo tamanho ou maiores que 4, 6 ou 14 μ m em 1 ml de fluido.

Classe	Número de partículas por ml				
	Acima	Até			
28	1 300 000	2 500 000			
27	640 000	1 300 000			
26	320 000	640 000			
25	160 000	320 000			
24	80 000	160 000			
23	40 000	80 000			
23 22	20 000	40 000			
21	10 000	20 000			
20	5 000	10 000			
19	2 500	5 000			
18	1 300	2 500			
17	640	1 300			
16	320	640			
15	160	320			
14	80	160			
13	40	80			
12	20	40			
11	10	20			
10	5	10			
9	2.5 1.3	5			
8	1.3	2.5			
7	0.64	1.3			
6	0.32	0.64			
5	0.16	0.32			
4	0.08	0.16			
3	0.04	0.08			
2	0.02	0.04			
	0.01	0.02			
0	0	0.01			

- \geq 4 µm_(c) =350 partículas
- \geq 6 μ m_(c) =100 partículas
- \geq 14 μ m_(c) = 25 partículas

16/14/12

COMO LER UM CÓDIGO ISO

O que significa exatamente uma leitura ISO 4406? Os números representam uma classe que identifica o número de partículas de determinadas dimensões em 1 ml de fluido. Cada número da classe tem um intervalo de tamanho especifico.

O primeiro número representa o número de partículas maiores que 4 μ m_(c).

O segundo número representa o número de partículas maiores que 6 μ m_(c).

O terceiro número representa o número de partículas em uma amostra de um mililitro do fluido que são maiores que 14 μ m $_{(c)}$.

Digamos que o resultado seja um código 16/14/12. Ao verificar o intervalo do código na tabela abaixo, o operador pode encontrar o tamanho e o número de partículas identificados no fluido.

COMPARAÇÃO DE CÓDIGOS DE LIMPEZA

Embora a norma ISO 4406 seja utilizada amplamente na indústria hidráulica, ocasionalmente outras normas são necessárias e uma comparação pode ser solicitada. Os contadores de partículas da MP Filtri medem outras normas concomitante com a norma ISO 4406, mas a tabela abaixo pode ser usada como uma ferramenta de comparação bem ampla. Às vezes, não é possível efetuar uma comparação devido às diferentes classes e tamanhos envolvidos.

ISO 4406	SAE AS4059 - Tabela 2	SAE AS4059 - Tabela 1	NAS 1638
> 4 μm _(c) > 6 μm _(c) 14 μm _(c)	> 4 μm _(c) > 6 μm _(c) 14 μm _(c)	4-6 6-14 14-21 21-38 38-70 >70	5-15 15-25 25-50 50-100 >100
23 / 21 / 18	13A / 12B / 12C	12	12
22 / 20 / 17	12A / 11B / 11C	11	11
21 / 19 / 16	11A / 10B / 10C	10	10
20 / 18 / 15	10A / 9B / 9C	9	9
19 / 17 / 14	9A / 8B / 8C	8	8
18 / 16 / 13	8A / 7B / 7C	7	7
17 / 15 / 12	7A / 6B / 6C	6	6
16 / 14 / 11	6A / 5B / 5C	5	5
15 / 13 / 10	5A / 4B / 4C	4	4
14/12/9	4A / 3B / 3C	3	3

NAS 1638

NORMA DE CLASSIFICAÇÃO DE LIMPEZA

A norma NAS foi desenvolvida originalmente em 1964 para definir classes para a contaminação contida nos componentes de aeronaves. A aplicação desta norma foi ampliada aos sistemas hidráulicos industriais simplesmente porque não existia mais nada naquele momento.

O sistema de codificação define o número máximo de partículas de contaminação em vários intervalos de tamanho (contagens diferenciais) em vez de usar contagens cumulativas, como na norma ISO 4406. Embora não seja fornecida nenhuma orientação na norma sobre como referenciar os níveis, a maioria dos usuários industriais assume um único código, que é o mais alto registrado em todos os tamanhos, e essa convenção é a usada nos APCs da MP Filtri.

As classes de contaminação são definidas por um número (de 00 a 12) que indica o número máximo de partículas por 100 ml, contadas em uma base diferencial, em um dado suporte de tamanho.

	Limites máximos de contaminação por 100 ml								
Classe	5 - 15	15 - 25	25 - 50	50 - 100	>100				
00	125	22	4	1	0				
0	250	44	8	2	0				
1	500	89	16	3	1				
2	1 000	178	32	6	1				
3	2 000	356	63	11	2				
4	4 000	712	126	22	4				
5	8 000	1 425	253	45	8				
6	16 000	2 850	506	90	16				
7	32 000	5 700	1 012	180	32				
- 8	64 000	11 400	2 025	360	64				
9	128 000	22 800	4 050	720	128				
10	256 000	45 600	8 100	1 440	256				
11	512 000	91 200	16 200	2 880	512				
12	1 024 000	182 400	32 400	5 760	1 024				

Classes de intervalo de tamanho (em mícron)

5 - 15 µm = 42 000 partículas 15 - 25 µm = 2 200 partículas 25 - 50 µm = 150 partículas 50 - 100 µm = 18 partículas > 100 µm = 3 partículas Classe NAS 8

SAE AS4059 - REV. E

CLASSIFICAÇÃO DE LIMPEZA PARA FLUIDOS HIDRÁULICOS (SAE AEROSPACE STANDARD - NORMA AEROESPACIAL)

Essa norma SAE AS (Aerospace Standard) define os níveis de limpeza para contaminação por partículas dos fluidos hidráulicos e inclui métodos de indicar dados relativos aos níveis de contaminação. As tabelas 1 e 2 abaixo fornecem contagens de partículas diferenciais e cumulativas respectivamente para contagens obtidas por um contador automático de partículas, por exemplo, LPA3.

Classe para medição diferencial

Tabela 1

Classe	Dimensão do contaminante Limites máximos de contaminação por 100 ml						
	6-14 μm _(c)	14-21 µm _(c)	21-38 µm _(c)	38-70 μm _(c)	>70 µm _(c)		
00	125	22	4	1	0		
0	250	44	8	2	0		
1	500	89	16	3	1		
2	1 000	178	32	6	1		
3	2 000	356	63	11	2		
4	4 000	712	126	22	4		
5	8 000	1 425	253	45	8		
6	16 000	2 850	506	90	16		
7	32 000	5 700	1 012	180	32		
8	64 000	11 400	2 025	360	64		
9	128 000	22 800	4 050	720	128		
10	256 000	45 600	8 100	1 440	256		
11	512 000	91 200	16 200	2 880	512		
12	1 024 000	182 400	32 400	5 760	1 024		

6 - 14 μm _(c) =15 000 partículas
14 - 21 μ m _(c) = 2 200 partículas
21 - 38 μ m _(c) = 200 partículas
38 - 70 μ m _(c) = 35 partículas
$> 70 \mu m_{(c)} = 3 partículas$
SAE ASA050 REV E - Classe 6

Classe para medição cumulativa

Tabela 2

Classe	Dimensão do contaminante Limites máximos de contaminação por 100 ml						
	>4 µm _(c)	>6 µm _(c)	>14 µm _(c)	>21 µm _(c)	>38 µm _(c)	>70 µm _(c)	
000	195	76	14	3	1	0	
00	390	152	27	5	1	0	
0	780	304	54	10	2	0	
1	1 560	609	109	20	4	1	
2	3 120	1 217	217	39	7	1	
3	6 250	2 432	432	76	13	2	
4	12 500	4 864	864	152	26	4	
5	25 000	9 731	1 731	306	53	8	
6	50 000	19 462	3 462	612	106	16	
7	100 000	38 924	6 924	1 224	212	32	
8	200 000	77 849	13 849	2 449	424	64	
9	400 000	155 698	27 698	4 898	848	128	
10	800 000	311 396	55 396	9 796	1 696	256	
11	1 600 000	622 792	110 792	19 592	3 392	512	
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024	

>	4	$\mu m_{(c)}$	=45	000) par	tícul	as	
>	6	μm _(c)	=15	000) par	tícul	as	
>	14	μm _(c)	= 1	500	part	ícula	IS	
>	21	μm _(c)	=	250	part	ícula	IS	
>	38	µm _(c)	=	15	part	ícula	IS	
>	70	µm _(c)	=	3	part	ícula	IS	
5/	AE A	S405	9 RE	V. E				
3/	V6E	3/5C/5	D/4	E/2F				

As informações reproduzidas nesta página e na página anterior são um breve extrato da SAE AS4059 Rev. E, revista em maio de 2005. Para obter mais detalhes e explicações, consulte a norma completa.

VISÃO GERAL DO PRODUTO

A MP Filtri projeta e fabrica uma linha completa de soluções para o controle da contaminação destinadas a aumentar a vida útil e a produtividade de circuitos hidráulicos.

A tecnologia avançada incorporada na linha de produtos de monitoramento de contaminação da empresa permite a manutenção preventiva e preditiva, garantindo um desempenho consistente, uma maior vida útil dos componentes e uma redução nos custos de serviço, manutenção e reposição.

A linha CMP da MP Filtri fornece uma solução perfeita para aplicações estacionárias, móveis e de laboratório.

PRODUTOS PORTÁTEIS

Leves e duráveis, os contadores de partículas portáteis da MP Filtri permitem que os operadores levem o laboratório para onde forem, realizando verificações abrangentes das condições hidráulicas com resultados imediatos, com precisão líder do mercado e espaço de armazenamento de até 4.000 testes na memória.

Ideal para os setores de offshore, aviação e equipamentos mobil, bem como para ambientes de trabalho remotos nos quais enviar e receber amostras do laboratório seria uma tarefa demorada e trabalhosa, o contador de partículas portátil garante o melhor em velocidade, flexibilidade e funcionalidade em múltiplas aplicações e sistemas.

A linha inclui-

COMO ENCONTRAR O PRODUTO CERTO

PRODUTOS COM MONTAGEM PERMANENTE, INLINE

Criados para um sistema individual, a linha de contadores de partículas inline (em linha) da MP Filtri oferece resultados altamente precisos em tempo real, fornecendo uma análise detalhada da limpeza do fluido que pode ser acessada 24 horas por dia, 7 dias por semana o ano inteiro.

A mais recente criação dessa tecnologia é Wi-Fi, para que os operadores possam acessar os resultados a partir de qualquer lugar do mundo, através do sofisticado software de análise da empresa, nos sistemas de nuvem dos clientes ou no simples aplicativo móvel da MP Filtri.

Essa tecnologia é ideal para monitorar tendências e obter um quadro completo do estado atual e passado da contaminação de cada sistema hidráulico individual em operação.

A linha inclui:

APLICAÇÕES LABORATORIAIS

Os amostradores de frascos de 110 ml e 500 ml da MP Filtri são adequados para aplicações off-line e laboratoriais nas quais a amostragem de fluido no ponto de utilização é inacessível ou pouco prática. Um dispositivo de desaeração do fluido é fornecido de série.

O produto é compatível com diversos tipos de fluidos hidráulicos, dependendo da versão e também é compatível com uma ampla gama de viscosidades de fluidos.

A linha inclui:

PRODUTOS PORTÁTEIS

Comparação de produtos

Produto/Especificação	LPA3	LPA2	CML2
Tecnologia de contagem de partículas	Contador de partículas LED	Contador de partículas duplo laser	Contador de partículas duplo laser
Princípio de medição	Obscurecimento de luz óptica	Obscurecimento de luz óptica	Obscurecimento de luz óptica
Fonte de luz	LED	Óptica de duplo laser Detectores de diodo	Óptica de duplo laser Detectores de diodo
Calibração	MTD ISO	MTD ISO	MTD ISO
Formatos de relatório	ISO 4406 (4, 6, 14) NAS AS4509	ISO 4406 (4, 6, 14) NAS AS4059	ISO 4406 (4, 6, 14) NAS AS4059
Teclado	Qwerty tamanho completo (tela sensível ao toque)	Qwerty tamanho completo	Não
Display	10,1 pol sensível ao toque	Sim - LCD	Sim - LCD
Válvula de descarga integrada	Manual e automática	Manual e automática	Manual e automática
Canais de medição	8 canais de medição 4, 6, 14, 21, 15, 38, 50, 70	8 canais de medição 4, 6, 14, 21, 15, 38, 50, 68	8 canais de medição 4, 6, 14, 21, 15, 38, 50, 68
Viscosidade	1-420 mm²/s	1-400 mm ² /s	1-400 mm ² /s
Temperatura do fluido [°C]	Mínima: +5 °C Máxima: +80 °C	Mínima: +5 °C Máxima: +80 °C	Mínima: +5 °C Máxima: +80 °C
Temperatura ambiente [°C]	Mínima: -10 °C Máxima: +80 °C	Mínima: -10 °C Máxima: +60 °C	Mínima: -10 °C Máxima: +60 °C
Impacto da pressão/vazão/temp.	Não afetado por flutuações de vazão, pressão e temp. do sistema	Não afetado por flutuações de vazão, pressão e temp. do sistema	Não afetado por flutuações de vazão, pressão e temp. do sistema
Compatibilidade com fluidos	Óleos minerais, fosfatos, Ésteres, Skydrol, querosene, fluidos base d'água	Óleos minerais, fosfatos, Ésteres, Skydrol, querosene, fluidos base d'água	Óleos minerais, fosfatos, Ésteres, Skydrol, querosene fluidos base d'água
Dispositivo de limpeza	Sim	Sim	Sim
Volumes de amostra	máx. 100 ml por curso da bomba	8-30 ml	8-30 ml
Dispositivo de amostragem por frasco	Sim, 120V com vácuo	Sim, 120V com vácuo	Sim, 120V com vácuo
Opções de amostragem por frasco	110 e 500 ml	110 e 500 ml	110 e 500 ml
Dispositivo de desaeração	Sim	Sim	Sim
Software fornecido	Sim - LPA View	Sim - LPA View	Sim - LPA View
Memória (n.º de testes armazenados)	4000	600	600
Grau de proteção	IP66 (tampa fechada) IP54 (tampa aberta)	IP51 (tampa aberta)	IP51 (tampa aberta)
Dimensões [mm]	435 x 292 x 155	430 x 260 x 210	354 x 298 x 150
Peso líquido [kg]	10 kg	6.7 kg	6 kg
Opcionais	Cartão de memória para download, Transdutor de pressão umidade e temperatura	nPAcial	

PRODUTOS PORTÁTEIS

LPA3

O mais recente de uma nova geração de contadores de partículas portáteis. Esteja o operador trabalhando no laboratório ou no campo,

o LPA3 proporciona uma verificação rápida, precisa e confiável do estado do sistema hidráulico em um pacote robusto, mas portátil.

Seu monitoramento em tempo real e sua tecnologia de manutenção preditiva protegem as máquinas; melhora o desempenho e a produtividade e reduz os custos e o tempo de inatividade.

Com as mais recentes inovações em tecnologia óptica e de fotodiodos, o LPA3 aumenta a confiabilidade e a longevidade de sistemas hidráulicos complexos e é ideal para aplicações internas de controle de qualidade de fabricação.

O LPA3 é compatível com o dispositivo de amostragem por frasco da MP Filtri.

- Totalmente programável para atender às aplicações do usuário final
- Volumes de amostragem maiores e variáveis (até 100 ml) para uma precisão ideal
- Análises de tendência em tempo real
- Display sensível ao toque colorido de alta resolução de 10.1 pol (256 mm)
- Major capacidade de armazenamento até 4000 testes
- Download automático dos resultados dos testes via conexão USB
- Bateria recarregável aprimorada em íons de lítio de longa duração
- Maleta robusta e durável em material copolímero
- Tempos de amostragem de alta velocidade
- Totalmente portátil com apenas 10 kg
- Análises de tendência em tempo real
- Mede e exibe códigos das normas ISO 4406, NAS, AS 4059, GBT e GJB
- Sensores de umidade (%UR), temperatura (°C) e pressão (bar) opcionais
- Principais informações sobre o desempenho num piscar dos olhos
- Impressora integrada opcional
- Calibrado para os padrões ISO relacionados
- Medição completa em 8 canais
- Compatível com vários fluidos hidráulicos, lubrificantes e offshore, para aplicacões subaquáticas e fluidos à base de água
- 0 modelo S é compatível com ésteres de fosfato e fluidos agressivos
- · Software LPA View (baseado em Windows) incluído.

PRODUTOS PORTÁTEIS

LPA2

Um instrumento altamente preciso, leve e portátil adequado para aplicações no campo e no laboratório. O LPA2 pode medir e exibir automaticamente os níveis de contaminação por partículas, umidade e temperatura em uma variedade de fluidos hidráulicos.

O LPA2 pode ser conectado ao dispositivo de amostragem por frasco da MP Filtri para permitir a contagem de partículas em laboratório.

É uma solução ideal para o monitoramento on-line de contaminação em fluidos hidráulicos, proporcionando uma análise imediata da verificação da condição. Emprega procedimentos de manutenção preditiva para ajudar a reduzir o tempo de inatividade e os custos.

AIRBUS

Principais caraterísticas

- Totalmente portátil e leve (6.7 kg)
- Teclado QWERTY tamanho grande
- Impressora térmica integrada
- Aprovado pela Airbus para o setor de aviação
- Sensor de umidade e temperatura
- Calibrado para os padrões ISO relacionados
- · Compatível com vários fluidos hidráulicos
- Software LPA View (baseado em Windows)
- Armazena até 600 resultados de testes na memória

CML2

Um instrumento portátil, preciso e compacto, adequado para aplicações em campo. O CML2 pode medir e exibir automaticamente os níveis de contaminação por partículas, a umidade e a temperatura em vários fluidos hidráulicos.

Pesando apenas 6 kg, é leve, mas robusto e ideal para portabilidade.

- Design compacto
- 0 aparelho mais leve da sua classe (6 kg)
- Calibrado para os padrões ISO relacionados
- Compatível com vários fluidos hidráulicos
- Armazena até 600 resultados de testes na memória
- Kit de acessórios completo incluído
- Solução acessível para orçamentos apertados

PRODUTOS COM MONTAGEM PERMANENTE, INLINE

PRODUTOS COM MONTAGEM PERMANENTE INLINE

Comparação de produtos

Produto/Especificação	ICM 2.0	ICM 4.0 com Wi-Fi	ICU
Tecnologia de contagem de partículas	Contador de partículas LED	Contador de partículas LED	Contador de partículas LED
Princípio de medição	Obscurecimento de luz óptica	Obscurecimento de luz óptica	Obscurecimento de luz óptica
Fonte de luz	LED	LED	LED
Calibragem	MTD ISO	MTD ISO	MTD ISO
Tamanhos de partículas	>4, >6, >14, >21, >25, >38, >50, >70 μm(c)	>4, >6, >14, >21, >25, >38, >50, >70 μm(c)	4, 6, 14 μm(c)
Classes de análise	ISO 4406: Classes 0 a 24;	ISO 4406: Classes 0 a 24;	ISO 4406: Classes 0 a 20;
	NAS 1638 Classes 00 a 12;	NAS 1638 Classes 00 a 12;	
	AS4059/IS011218 Rev. E, Tabela 1 Classes de tamanho 2-12;	AS4059/IS011218 Rev. E, Tabela 1 Classes de tamanho 2-12;	
	AS4059/GJB420B Rev. E, Tabela 2 Classes de tamanho A-F 000-12;	AS4059/GJB420B Rev. E, Tabela 2 Classes de tamanho A-F 000-12;	
	AS4059 Rev. F, Tabela 1 Classes de tamanho 2-12;	AS4059 Rev. F, Tabela 1 Classes de tamanho 2-12;	
	AS4059 Rev. F, Tabela 2 Classes de tamanho, cpc [000 a 12]	AS4059 Rev. F, Tabela 2 Classes de tamanho, cpc [000 a 12]	
Precisão	± 1/2 classe para 4, 6, 14 µm _(c) ± 1 classe para tamanhos maiores	± 1/2 classe para 4, 6, 14 µm _(c) ± 1 classe para tamanhos maiores	± 1/2 classe para 4, 6, 14 µm _(c)
Intervalo de viscosidade	Até 1000 cSt	Até 1000 cSt	Até 1000 cSt
Temperatura do fluido [°C]	Mínima: -25 °C Máxima: +80 °C	Mínima: -25 °C Máxima: +80 °C	Mínima: -25 °C Máxima: +60 °C
Temperatura ambiente [°C]	Mínima: -10 °C Máxima: +55 °C	Mínima: -10 °C Máxima: +55 °C	Mínima: 0 °C Máxima: +60 °C
Pressão [bar]	Mínima: 0.5 bar Máxima: 420 bar	Mínima: 0.5 bar Máxima: 420 bar	Mínima: 25 bar Máxima: 350 bar
Volume de amostra	Ajustável 10 - 3600 s Ajustado na fábrica em 120 s Retardo de partida e intervalos de teste programáveis disponíveis de série	Ajustável 10 - 3600 s Ajustado na fábrica em 120 s Retardo de partida e intervalos de teste programáveis disponíveis de série	Ajustável 10 - 3600 s
Armazenamento de dados	Até 4000 testes	Até 4000 testes	Não há memória interna
Grau de proteção	IP64 versátil Proteção contra impactos IK04	IP64 versátil Proteção contra impactos IK04	N/D
Alimentação	Tensão 9-36 V CC	Tensão 9-36 V CC	24 VCC ± 20%
Peso líquido [kg]	1.6 kg	1.6 kg	1.4 kg
Dimensões do produto [mm]	Largura: 123 mm Altura: 142 mm Profundidade: 65 mm	Largura: 123 mm Altura: 142 mm Profundidade: 65 mm	Largura: 50 mm Altura: 93 mm Profundidade: 70 mm

ICM 2.0

Monitor de contaminação em linha que mede e exibe automaticamente os níveis de contaminação por partículas, umidade e níveis de temperatura em vários fluidos hidráulicos. Projetado para montagem permanente em sistemas nos quais a medição contínua é essencial.

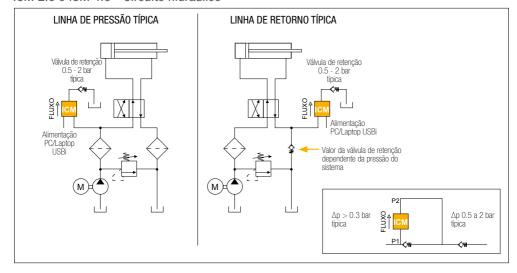
Principais caraterísticas

- Medição e exibição completa de 8 canais
- Medidas conforme as normas ISO 4406, NAS 1638, e AS 4059E
- Sensor de umidade e temperatura (dependente do fluido)
- Registro de dados com memória para 4000 resultados de testes
- Flexibilidade para controle: manual, automático ou remoto
- Indicadores de exibição multicoloridos e LED com alarmes de saída
- Construção robusta em alumínio fundido
- Software LPA View incluído (baseado em Windows)
- Pressão máxima de 420 bar
- Compatível com vários fluidos hidráulicos, lubrificantes e offshore, para aplicações subaquáticas e fluidos à base de água
- Grau de proteção IP 65/67 versátil
- Conector secundário para controle e download simultâneos de resultados durante a operação
- Saída analógica de 4-20 mA

ICM 4.0

O aclamado Monitor de Contaminação em Linha da MP Filtri elevou o nível de sofisticação uma vez mais, adicionando conectividade Wi-Fi total ao seu conjunto de funcionalidades, precisão e repetibilidade líderes de mercado.

Com seu sistema de monitoramento em tempo real 24 horas por dia, 7 dias por semana, e de aviso precoce crítico, o ICM 4.0 oferece o que há de mais avançado em verificações da saúde hidráulica do sistema, com todos os dados acessíveis através de um conjunto sofisticado de software e um novo e inovador aplicativo para celular.


Projetado para montagem permanente em sistemas nos quais a medição contínua é essencial.

- Excelente conectividade usando a mais recente tecnologia Wi-Fi
- Medição e exibição completa de 8 canais
- Medidas conforme as normas ISO 4406, NAS 1638, e AS 4059E
- Sensor de umidade e temperatura (dependente do fluido) opcional
- Registro de dados com memória para 4000 resultados de testes
- Flexibilidade para controle: manual, automático ou remoto
- Indicadores de exibição multicoloridos e LED com alarmes de saída
- Construção robusta em alumínio fundido
- Software LPA View incluído (baseado em Windows)
- Pressão máxima de 420 bar
- Compatível com vários fluidos hidráulicos, lubrificantes e offshore, para aplicações subaquáticas e fluidos à base de água
- Grau de proteção IP 65/67 versátil
- Conexões sem Wi-Fi também estão disponíveis de série
 Modbus, CAN bus, sinal de 4-20 mA e saídas de relé de alarmes comutados

PRODUTOS COM MONTAGEM PERMANENTE, INLINE

ICM 2.0 e ICM 4.0 - Circuito hidráulico

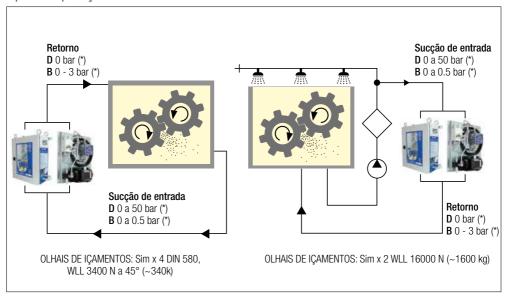
ICU

O ICU mede automaticamente os níveis de contaminação por partículas em vários fluidos hidráulicos e é projetado especialmente para aplicações industriais. Uma solução acessível para a indústria, foi desenvolvido no estilo bloco manifold, é ideal para aplicações nas quais são necessárias medição e análise contínuas, enquanto o espaço e os custos são limitados.

- · Montagem estilo manifold
- Medição de 3 canais
- Medidas de acordo com ISO 4406
- Construção robusta
- Software LPA View incluído
- Pressão máxima de 350 bar
- Grau de proteção IP 65/67 versátil
- Saída analógica de 4-20 mA

ACMU

Incorporando a tecnologia ICM, o ACMU pode oferecer conectividade Wi-Fi


Projetado para medir sistemas hidráulicos e de lubrificação aerados, viscosos e não pressurizados nos setores de energia eólica, de marés e de ondas, aplicações e monitoramentos de caixas de redutores, sistemas offshore e marítimos, sistemas de lubrificação e de óleo, equipamentos móveis e bancadas de testes.

Principais caraterísticas

- Opções de escolhas de tecnologias de monitoramento de contaminação em linha ICM 2.0 e ICM 4.0
- · Recursos de Wi-Fi
- Medição completa de 8 canais
- Medidas conforme as normas ISO 4406, NAS 1638, e AS 4059E
- Flexibilidade para controle: manual, automático ou remoto
- Construção robusta
- Ideal para fluidos aerados e fluxos turbulentos, bem como sistemas de fluidos de alta viscosidade e não pressurizados.
- · Fácil de atualizar
- Desempenho confiável e preciso
- Versões de gabinete e placa disponíveis
- Software LPA View (baseado em Windows)

Tipos de aplicação

(*) Manômetro

PRODUTOS COM MONTAGEM PERMANENTE

PRODUTOS ESTÁTICOS OFF-LINE: BS110 (110 ML) / BS500 (500 ML)

Os dispositivos de amostragem por frascos da MP Filtri são adequados para aplicações off-line e laboratoriais nas quais a amostragem de fluido no ponto de utilização é inacessível ou pouco prática. Um dispositivo de desaeração do fluido é fornecido de série.

- Recurso de vácuo para desaeração de fluidos
- Compatível com todos os contadores de partículas portáteis da MP Filtri
- Forte visual de laboratório
- Camada externa transparente para indicação visual
- Kit de acessórios completo
- Compatível com vários fluidos hidráulicos e de lubrificação, combustível diesel e fluidos offshore
- Bolsa de transporte protetora (apenas BS110)
- USBi, ETHI, Wi-Fi dongle, FC1, e outros acessórios

WORLDWIDE NETWORK

HEADQUARTERS

MP Filtri S.p.A.

Pessano con Bornago Milano Italy sales@mpfiltri.com

BRANCH OFFICES

ITALFILTRI LLC

Moscow Russia mpfiltrirussia@yahoo.com

MP Filtri Canada Inc.

Concord, Ontario Canada sales@mpfiltricanada.com

MP Filtri France SAS

Lyon AURA France sales@mpfiltrifrance.com

MP Filtri Germany GmbH

St. Ingbert Germany sales@mpfiltri.de

MP Filtri India Pvt. Ltd.

Bangalore India sales@mpfiltri.co.in

MP Filtri (Shanghai) Co., Ltd.

Shanghai P.R. China sales@mpfiltrishanghai.com

MP Filtri SEA PTE Ltd.

Singapore sales-sea@mpfiltri.com

MP Filtri U.K. Ltd.

Bourton on the Water Gloucestershire United Kingdom sales@mpfiltri.co.uk

MP Filtri U.S.A. Inc.

Quakertown, PA U.S.A. sales@mpfiltriusa.com

PASSION TO PERFORM

